4.2’ x 1.8’ x 2’ 2.8’ x 1.5’ x 3.2’ 1.7’ x 2.25’ x 4.7’ 4.7' x 1.7' x 2.25' Storage Capacity : Designed to fit up to two 60 gallon garbage cans or recycling bins : 8 cubic feet of internal storage : 7 cubic feet of internal storage : 7 cubic feet of internal space : 7 cubic feet of internal space : Color

Oblicz 4 do potęgi 5/2 27 do potęgi 2/3 0,04 do potęgi 3/2 (25/81) do potęgi -1/25 (6 do potęgi 1/4) do potęgi - 0,5
Zapisz podane liczby w notacji wykładniczej. a) 357 * 10 do potęgi 4 b) 25,3 * 10 do potęgi 5 c) 0,013 * 10 do potęgi 15 d) 27,5 * 10 do potęgi -3 e)5,2 * 10 do potęgi 20 * 3,5 do potęgi 10 f)1,25 * 10 do potęgi 18 / (przez) 25 * 10 do potęgi. Question from @Gabkaaa - Gimnazjum - Matematyka Jesteś : Strona główna >> Potęgi i pierwiastki >> Potęga o wykładniku całkowitym ujemnym Definicja (Potęga o wykładniku całkowitym ujemnym) Jeżeli \(\boldsymbol a\) jest dowolną liczbą, różną od zera, a \(\boldsymbol n\) jest liczbą naturalną , to \[\LARGE \displaystyle a^{-n}=\frac1{a^n}\] liczby naturalne są to liczby : 1, 2, 3, 4, 5, 6, 7, ... Przykłady: \(\displaystyle 3^{-2}=\frac1{3^2}=\frac1{3\cdot3}=\frac19\) \(\displaystyle 2^{-4}=\frac1{2^4}=\frac1{2\cdot2\cdot2\cdot2}=\frac1{16}\) Twierdzenie (Ułamek do potęgi ujemnej) Jeżeli \(\boldsymbol a\) i \(\boldsymbol b\) są dowolnymi liczbami różnymi od zera, a \(\boldsymbol n\) jest liczbą naturalną , to \[\large \left ( \frac{a}{b} \right )^{-n}=\left ( \frac{b}{a} \right )^{n}\] Przykłady: \(\displaystyle \left(\frac54\right)^{-2}=\left(\frac45\right)^2=\frac45\cdot\frac45=\frac{16}{25}\) \(\displaystyle \left(\frac15\right)^{-3}=\left(\frac51\right)^3=5^3=125\) POTĘGA O WYKŁADNIKU CAŁKOWITYM UJEMNYM - ZADANIA Zadanie 1 Podane liczby podnieść do potęgi minus jeden : 1 , 2 , 6 , 25 , 10 , 100 Rozwiązanie Zadanie 2 Podnieść liczby do ujemnej potęgi : \( 6^{-2}\;,\;10^{-2}\;,\;5^{-3}\;,\;4^{-4}\;,\;1^{-5}\;,\;2^{-6}\)Rozwiązanie Zadanie 3 Oblicz potęgi : \(\left(-2\right)^{-1}\;,\;-2^{-1}\;,\;\left(-3\right)^{-2}\;,\;-3^{-2}\) , \(\left(-5\right)^{-3}\;,\;\left(-2\right)^{-4}\;,\;\left(-10\right)^{-2}\)Rozwiązanie Zadanie 4 Oblicz ułamki podniesione do potęgi ujemnej: \(\left(\frac25\right)^{-1}\;,\;\left(\frac47\right)^{-2}\;,\;\left(\frac13\right)^{-3}\;,\; \left(0,1\right)^{-1}\;,\;\left(0,2\right)^{-2}\) korzystając ze wzoru: \(\large a^{-n}=\frac1{a^n}\)Rozwiązanie Zadanie 5 Oblicz ułamki podniesione do potęgi ujemnej: \(\left(\frac37\right)^{-1}\;,\;\left(\frac54\right)^{-2}\;,\;\left(\frac15\right)^{-3}\;,\; \left(0,1\right)^{-1}\;,\;\left(0,5\right)^{-2}\) korzystając ze wzoru: \(\left(\frac ab\right)^{-n}=\left(\frac ba\right)^n\)Rozwiązanie Zadanie 6 Udowodnij wzór na podnoszenie ułamku do potęgi ujemne : \(\large \left(\frac ab\right)^{-n}=\left(\frac ba\right)^n\)Rozwiązanie Powrót : Strona główna >> Potęgi i pierwiastki >> Potęga o wykładniku całkowitym ujemnym (25 do potęgi ½ - 16 do potęgi ½)do potęgi½= 2. [(10-19do ½)(10+19do½)]do¼= 3. [2×27do ⅔ + (¹/₄₉) do ₋½]do ⅔= 4.(2do³/₂+√2)do²/₃= 5.32do⅗ × 125 do ₋²/₃= 6.(₈₁/₆₂₅)do ₋¾ ÷ ( 1⅔)do³= 7.(0,001 × ¹/₂₇) do ₋⅔= 8.( 64 do ⅔ × 8 do ₋₁) do ₋⅔= 9. 2 ×(0,3)do ₋₁ + 4×8 do ⅔ 25^(1/2)=√25=5------------------------------------- Najnowsze pytania z przedmiotu Matematyka ćw 2 i ćw 3 prosze o pomoc z góry dziękuje :) Obliczyć całkę[tex]\iiint_U \sin x \sin{(x+y)}\sin{(x+y+z)} \, dzdydx[/tex]po obszarze:[tex]U=[0,\pi]\times[0,\pi]\times[0,\pi][/tex] ćw 1 proszę o pomoc z góry dziękuje :) Na trójkącie ABC opisano okrąg o środku S. Długość najkrótszego z boków trójkąta ABC wynosi 10 cm. Odległości środka S od boków trójkąta wynoszą 5 cm, … 7 cm i 12 cm. Oblicz pro mień okręgu opisanego na trójkącie ABC i obwód tego trójkąta. W trójkącie prostokątnym ABC wysokość CD poprowadzona z wierzchołka C kąta prostego podzieliła przeciwprostokątną w stosunku 4:2. oblicz długość przec … iwprostokątnej AB jeżeli AC = 2√ o dokładny opis z rysunkiem. Z góry dziękuję ​ błagam niech ktoś pomoże z tymi 2 zadaniami D: dam naj​ (2√3-3√6) ² jak po kolei to obliczyć?​ Podane liczby zaznaczono kropkami na osi liczbowej. Wskaż litery odpowiadające tym liczbom Oblicz, a następnie podaj liczbę przeciwną i liczbę odwrotną do wartości wyrażenia. A)5 1/2+(-1 1/4)-(-1)=. Liczba przeciwna___. Liczba odwrotna_____. … B) - 7,75-4,2+6,5-5,05=_______________ liczba przeciwna___ liczba odwrotna​. Jeżeli mam 7 dag i 2 g = ….. g To wynik ma być ? = 702g Czy = 720 g Bo nie rozumiem …? a,p\in\mathbb {Z} jest liczbą pierwszą. Wyznacz liczby. (wpisz liczbę zapisaną dziesiętnie) (wpisz liczbę zapisaną dziesiętnie) (1 pkt) ] Numer zadania: pp-10433. Zapisz wyrażenie \frac {4^a\cdot 5^b} {20^c} w postaci potęgi o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.
Gosia1919 zapytał(a) o 19:02 Ile jest 25 do potęgi 1/2? Proszę o szybką odpowiedź ;) 0 ocen | na tak 0% 0 0 Odpowiedz Odpowiedzi blocked odpowiedział(a) o 19:05 x do 1/n = pierwiastek n stopnia z xwięc 25 do 1/2 = pierwiastek z 25 , czyli 5 :) Odpowiedź została zedytowana [Pokaż poprzednią odpowiedź] 0 0 Gosia1919 odpowiedział(a) o 19:06: Dziękuje ;) pawelekkk85 odpowiedział(a) o 19:05 25 do potęgi 1/2 = pierwiastek z 25 czyli 5 :)Pozdrawiam 0 0 Gosia1919 odpowiedział(a) o 19:06: Dziękuje ;) Uważasz, że ktoś się myli? lub

1). Liczba (25 do potęgi 4) do potęgi 2 jest równa: A. 25 do potęgi 6 B. 5 do potęgi 8 C. 5 do potęgi 16 D. 25 do potęgi 16 2).Oblicz ( 7 pierwiastków z 18 - pierwiastek z 8 - 2 pierwiastki z 200 ) do potęgi 2. Potrzebne na teraz!!!

Szybka nawigacja do zadania numer: 5 10 15 20 25 30 35 40 .Liczba \(7^7\cdot 7^8\) jest równa A.\( 7^{56} \) B.\( 14^{56} \) C.\( 49^{15} \) D.\( 7^{15} \) DLiczba \(5^{17}\cdot 6^{17}\) jest równa A.\( 30^{34} \) B.\( 30^{17} \) C.\( 11^{17} \) D.\( 11^{34} \) BLiczba \(2^{20}\cdot 4^{40}\) jest równa A.\( 2^{60} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) BIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CLiczba \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \(2^{40}\cdot 4^{20}\) jest równa A.\( 4^{40} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) AIloraz \(125^5:5^{11}\) jest równy A. \(5^{-6}\) B. \(5^{16}\) C. \(25^{-6}\) D. \(25^2\) DLiczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci A.\( x=2^{14} \) B.\( x=2^{-14} \) C.\( x=32^{-2} \) D.\( x=2^{-6} \) BDana jest liczba \(x=63^2\cdot \left (\frac{1}{3} \right )^4\). Wtedy A.\( x=7^2 \) B.\( x=7^{-2} \) C.\( x=3^8 \cdot 7^2 \) D.\( x=3 \cdot 7 \) AIloczyn \(9^{-5}\cdot 3^8\) jest równy A.\( 3^{-4} \) B.\( 3^{-9} \) C.\( 9^{-1} \) D.\( 9^{-9} \) CTrzecia część liczby \(3^{150}\) jest równa: A.\( 1^{50} \) B.\( 1^{150} \) C.\( 3^{50} \) D.\( 3^{149} \) DWyrażenie \(\sqrt{1{,}5^2+0{,}8^2}\) jest równe: A.\( 2{,}89 \) B.\( 2{,}33 \) C.\( 1{,}89 \) D.\( 1{,}70 \) DLiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa A.\( 4^{-4} \) B.\( 2^{-4} \) C.\( 2^4 \) D.\( 4^4 \) ALiczba \(\sqrt[3]{(27)^{-1}}\cdot 72^0\) jest równa A.\( \frac{1}{3} \) B.\( -\frac{1}{3} \) C.\( 0 \) D.\( 3 \) ALiczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa A.\( 7^{\frac{4}{5}} \) B.\( 7^3 \) C.\( 7^{\frac{20}{9}} \) D.\( 7^2 \) BLiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \(\sqrt[3]{3}\cdot \sqrt[6]{3}\) jest równa A.\( \sqrt[9]{3} \) B.\( \sqrt[18]{3} \) C.\( \sqrt[18]{6} \) D.\( \sqrt{3} \) DLiczbę \(\sqrt{32}\) można przedstawić w postaci A.\( 8\sqrt{2} \) B.\( 12\sqrt{3} \) C.\( 4\sqrt{8} \) D.\( 4\sqrt{2} \) DWartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa A.\( 5^{500} \) B.\( 5^{101} \) C.\( 25^{100} \) D.\( 25^{500} \) BDo przedziału \((1, \sqrt{2})\) należy liczba: A.\( \sqrt{3}-1 \) B.\( 2\sqrt{5}-3\sqrt{2} \) C.\( \sqrt{6}-\sqrt{3} \) D.\( \sqrt{5}-\sqrt{1} \) DLiczbę \(0{,}000421\) można zapisać w postaci \(a\cdot 10^k\), gdzie \(a \in \langle 1, 10 \rangle, k \in C\). Wówczas: A.\( a=0{,}421;\ k=-3 \) B.\( a=4{,}21;\ k=-5 \) C.\( a=4{,}21;\ k=-4 \) D.\( a=42{,}1;\ k=-6 \) CWyrażenie \(2\sqrt{50}-4\sqrt{8}\) zapisane w postaci jednej potęgi wynosi A.\( 2^{\frac{3}{2}} \) B.\( 2^{\frac{1}{2}} \) C.\( 2^{-1} \) D.\( 4^{\frac{1}{2}} \) ALiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BKtóra z poniższych liczb jest większa od \(1\)? A.\( (0{,}1)^{-3} \) B.\( \left ( \frac{1}{2} \right)^{10} \) C.\( (-2)^{-4} \) D.\( \frac{1}{\sqrt{2}} \) AWiadomo, że \(x^{0,1205}=6\). Wtedy \(x^{0,3615}\) równa się A.\( \sqrt[3]{6} \) B.\( 216 \) C.\( 36 \) D.\( 3 \) BLiczby \(A=(5^4)^3, B=5^5+5^5, C =5^{12} : 5^7, D=5^3 \cdot 5^6\) ustawiono w kolejności malejącej, zatem A.\( B>A>D>C \) B.\( A>D>B>C \) C.\( A>B>D>C \) D.\( C>B>D>A \) BLiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BPo uproszczeniu wyrażenia \( \frac{(a^2:a^3)^{-2}}{a^{-5}} \), gdzie \( a \ne 0 \), otrzymamy A.\(a^7 \) B.\(a^{-3} \) C.\(a^3 \) D.\(a^{-7} \) ALiczba \( \left ( \frac{1}{\left (\sqrt[3]{729}+\sqrt[4]{256}+2 \right)^0} \right )^{-2} \) jest równa A.\(\frac{1}{225} \) B.\(\frac{1}{15} \) C.\(1 \) D.\(15 \) CLiczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa A.\(2^{2013} \) B.\(2^{2012} \) C.\(2^{1007} \) D.\(1^{2014} \) ALiczba \(\left (\sqrt[3]{16}\cdot 4^{-2} \right)^3\) jest równa A.\( 4^4 \) B.\( 4^{-4} \) C.\( 4^{-8} \) D.\( 4^{-12} \) BPołowa sumy \(4^{28}+4^{28}+4^{28}+4^{28}\) jest równa A.\(2^{30} \) B.\(2^{57} \) C.\(2^{63} \) D.\(2^{112} \) BLiczba \(\left ( \frac{3+\sqrt{3}}{\sqrt{3}} \right)^2\) jest równa A.\( 4 \) B.\( 9 \) C.\( \frac{3+\sqrt{3}}{3} \) D.\( 4+2\sqrt{3} \) DLiczba \(3^{\frac{9}{4}}\) jest równa A.\( 3\cdot \sqrt[4]{3} \) B.\( 9\cdot \sqrt[4]{3} \) C.\( 27\cdot \sqrt[4]{3} \) D.\( 3^9\cdot 3^{\frac{1}{4}} \) BWskaż równość prawdziwą. A.\( -256^2=(-256)^2 \) B.\( 256^3=(-256)^3 \) C.\( \sqrt{(-256)^2}=-256 \) D.\( \sqrt[3]{-256}=-\sqrt[3]{256} \) DLiczba \(\frac{\sqrt{8}}{\sqrt[3]{16}}\) jest równa A.\( \sqrt[3]{2} \) B.\( \sqrt[4]{2} \) C.\( \sqrt[5]{2} \) D.\( \sqrt[6]{2} \) DLiczba \(2^{\frac{4}{3}}\cdot \sqrt[3]{2^5}\) jest równa A.\( 2^{\frac{20}{3}} \) B.\( 2 \) C.\( 2^{\frac{4}{5}} \) D.\( 2^3 \) DLiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) A . 791 385 167 102 268 35 632 142

25 do potęgi 1 2